Number Systems

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Introduction

－A number system defines how a number can be represented using distinct symbols
－A number can be represented differently in different systems．For example，the two numbers $(2 A)_{16}$ and $(52)_{8}$ both refer to the same quantity，$(42)_{10}$ ，but their representations are different
－Several number systems have been used in the past and can be categorized into two groups：positional（位置）and non－positional（非位置）systems．Our main goal is to discuss the positional number systems，but we also give examples of non－positional systems

Positional Number Systems

- In a positional number system, the position a symbol occupies in the number determines the value it represents
- In this system, a number is represented as:

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0} \cdot S_{-1} S_{-2} \ldots S_{-L}\right)_{b}
$$

has the value of

$$
n= \pm S_{k-1} \times b^{k-1}+\cdots+S_{1} \times b^{1}+S_{0} \times b^{0}+S_{-1} \times b^{-1}+\cdots+S_{-L} \times b^{-L}
$$

in which S is the set of symbols, b is the base (基底) (or radix) which is equal to the total number of the symbols in the set S

- Notice the radix point (decimal point)

The decimal system（十進位系統）（base 10）

－In this system，the base $b=10$ and we use ten symbols

$$
S=\{0,1,2,3,4,5,6,7,8,9\}
$$

The symbols in this system are often referred to as decimal digits or just digits
－A number is written as

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0} \cdot S_{-1} S_{-2} \ldots S_{-L}\right)_{10}
$$

－For simplicity，we often drop the parentheses，the base，and the plus sign

$$
+(552.23)_{10} \rightarrow 552.23
$$

Integers

- We represent an integer as

$$
\pm S_{k-1} \ldots S_{2} S_{1} S_{0}
$$

in which S_{i} is a digit, $b=10$ is the base, and K is the number of digits

- The place values (位值) is the power of the base $\left(10^{0}, 10^{1}, \ldots, 10^{K-1}\right)$

Maximum value and reals

- Sometimes we need to know the maximum value of a decimal integer that can be represented by K digit

$$
N_{\max }=10^{K}-1
$$

- A real (a number with a fractional part) in the decimal system is also familiar. We can represent a real as $\pm S_{k-1} \ldots S_{2} S_{1} S_{0} . S_{-1} S_{-2} \ldots S_{-L}$ and the value is

$$
\begin{gathered}
\text { Integral part } \\
R= \pm S_{K-1} \times 10^{K-1}+\ldots+S_{1} \times 10^{1}+S_{0} \times 10^{0}+\frac{\text { Fractional part }}{S_{-1} \times 10^{-1}+\ldots+S_{-L} \times 10^{-L}}
\end{gathered}
$$

The binary system（二進位系統）（base 2）

－In this system，the base $b=2$ and we use only two symbols，$S=\{0,1\}$ ．The symbols in this system are often referred to as binary digits or bits
－We can represent an integer as

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0}\right)_{2}
$$

in which S_{i} is a binary digit，$b=2$ is the base，and K is the number of bits
－What is the corresponding decimal of $(11001)_{2}$ ？

Maximum value and reals

- The maximum value of a binary integer with K digits is

$$
N_{\max }=2^{K}-1
$$

- A real (a number with a fractional part) in the binary system is represented as $\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0} \cdot S_{-1} S_{-2} \ldots S_{-L}\right)_{2}$ and the value is

$$
\begin{array}{ccc}
& \text { Integral part } & \bullet \\
\boldsymbol{R}= \pm & \boldsymbol{S}_{K-1} \times \mathbf{2}^{K-1} \times \ldots \times \boldsymbol{S}_{1} \times \mathbf{2}^{1} \times \mathbf{S}_{0} \times \mathbf{2}^{0} & + \\
\boldsymbol{S}_{-1} \times \mathbf{2}^{-1}+\ldots+\boldsymbol{S}_{-L} \times \mathbf{2}^{-L}
\end{array}
$$

- What is the corresponding decimal of $(101.11)_{2}$?

The hexadecimal system（十六進位系統）（base 16）

－Base $b=16$ and we use sixteen symbols to represent a number

$$
S=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}
$$

－The symbols in this system are often referred to as hexadecimal digits
－We can represent an integer as

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0}\right)_{16}
$$

S_{i} is a hexadecimal digit，$b=16$ is the base，and K is the number of hexadecimal digits
－What is the corresponding decimal of $(2 A E)_{16}$ ？

Maximum value and reals

- The maximum value of a hexadecimal integer with K digits is

$$
N_{\max }=16^{K}-1
$$

- Although a real number can be also represented in the hexadecimal system, it is not very common

The octal system（八進位系統）（base 8）

－In this system，the base $b=8$ and we use eight symbols to represent a number． The set of symbols is

$$
S=\{0,1,2,3,4,5,6,7\}
$$

－The symbols in this system are often referred to as octal digits
－We can represent an integer as

$$
\pm\left(S_{k-1} \ldots S_{2} S_{1} S_{0}\right)_{8}
$$

S_{i} is a octal digit，$b=8$ is the base，and K is the number of octal digits
－What is the corresponding decimal of $(1256)_{8}$ ？

Maximum value and reals

- The maximum value of an octal integer with K digits is

$$
N_{\max }=2^{8}-1
$$

- Although a real number can be also represented in the octal system, it is not very common

Summary of the four positional systems

Table 2.1 Summary of the four positional number systems

System	Base	Symbols	Examples
Decimal	10	$0,1,2,3,4,5,6,7,8,9$	2345.56
Binary	2	0,1	$(1001.11)_{2}$
Octal	8	$0,1,2,3,4,5,6,7$	$(156.23)_{8}$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$	$(\mathrm{A} 2 \mathrm{C} . \mathrm{A} 1)_{16}$

Table 2.2 Comparison of numbers in the four systems

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion - Any base to decimal conversion

- We need to know how to convert a number in one system to the equivalent number in another system
- What is the corresponding decimal of $(110.11)_{2},(1 A .23)_{16},(23.17)_{8}$?

Decimal to any base - integral part

Decimal to any base - integral part

- Try to convert 35 in decimal to binary

Q: Quotients
R: Remainders
S: Source
D: Destination
D_{i} : Destination digit

Decimal to any base - integral part

- Try to convert 126 in decimal to octal system
- Try to convert 126 in decimal to hexadecimal system

Decimal to any base - fractional part

Decimal to any base - fractional part

- Try to convert 0.625 in decimal to binary

Note:
The fraction may never become zero. Stop when enough digits have been created.

Decimal to any base - fractional part

- Try to convert 0.634 in decimal to octal using a maximum of four digits
- Try to convert 178.6 in decimal to hexadecimal using only one digit to the right of the decimal point

Decimal to any base

- An alternative method for converting a small decimal integer (usually less than 256) to binary is to break the number as the sum of numbers that are equivalent to the binary place values shows:

Place values	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Decimal equivalent	128	64	32	16	8	4	2	1

- Using the table, we can convert 165 to $(10100101)_{2}$
Decimal $165=\frac{128}{1}+\frac{0}{0}+\frac{32}{1}+\frac{0}{0}+\frac{0}{0}+\frac{4}{1}+\frac{0}{0}+\frac{1}{1}$
Binary

Decimal to any base

- A similar method can be used to convert a decimal fraction to binary when the denominator is a power of two:

Place values	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}
Decimal equivalent	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$	$1 / 64$	$1 / 128$

- Using this table, we convert $\frac{27}{64}$ to $(0.011011)_{2}$

$$
\begin{aligned}
& \text { Decimal } 27 / 64=\frac{0}{1 / 4}+\frac{1 / 8}{1}+\frac{1}{0}+\frac{1 / 32}{1}+\frac{1 / 64}{1} \\
& \text { Binary }
\end{aligned}
$$

Number of digits

- In a positional number system with base b, we can always find the number of digits of an integer using the relation

$$
K=\left\lceil\log _{b}(N+1)\right\rceil
$$

Where N is the value of the integer in the decimal system

- For example, try to find the required number of digits in the decimal number 234 in all four systems

Binary-hexadecimal conversion

- Try to show the hexadecimal equivalent of the binary number $(10011100010)_{2}$ and the binary equivalent of $(24 C)_{16}$

Binary-octal conversion

- Try to show the octal equivalent of the binary number $(101110010)_{2}$ and the binary equivalent of $(24)_{8}$
$\mathrm{B}_{i}:$ Binary digit (bit) $\mathrm{O}_{i}:$ Octal digit

Octal-hexadecimal conversion

- We can use the binary system as the intermediate system

Number of digits from b_{1} to b_{2} system

- In general, assume that we are using K digits in base b_{1} system
* The maximum number we can represent in this source system is $b_{1}^{K}-1$
- The maximum number we can represent in the destination system is $b_{2}^{x}-1$
- Therefore, $b_{2}^{x}-1 \geq b_{1}^{K}-1 \rightarrow x \geq K \times\left(\frac{\log b_{1}}{\log b_{2}}\right)$ or $x=\left\lceil K \times\left(\frac{\log b_{1}}{\log b_{2}}\right)\right\rceil$
- Try to find the minimum number of binary digits required to store decimal integers with a maximum of six digits

Non-positional Number Systems

- A nonpositional number system still uses a limited number of symbols in which each symbol has a value
- However, the position a symbol occupies in the number normally bears no relation to its value-the value of each symbol is fixed
- In this system, a number is represented as

$$
S_{k-1} \ldots S_{2} S_{1} S_{0} \cdot S_{-1} S_{-2} \ldots S_{-L}
$$

and it usually has the value

$$
\begin{array}{ccc}
& \text { Integral part } & \text { Fractional part } \\
n= \pm & S_{K-1}+\ldots+S_{1}+S_{0}+ & S_{-1}+S_{-2}+\ldots+S_{-L}
\end{array}
$$

Roman number system

- This number system has a set of symbols $S=\{I, V, X, L, C, D, M\}$. The corresponding values are

Symbol	I	V	X	L	C	D	M
	Value	1	5	10	50	100	500

III	$\rightarrow 1+1+1$	$=3$
IV	$\rightarrow 5-1$	$=4$
VIII	$\rightarrow 5+1+1+1$	$=8$
XVIII	$\rightarrow 10+5+1+1+1$	$=18$
XIX	$\rightarrow 10+(10-1)$	$=19$
LXXII	$\rightarrow 50+10+10+1+1$	$=72$
CI	$\rightarrow 100+1$	$=101$
MMVII	$\rightarrow 1000+1000+5+1+1$	$=1007$
MDC	$\rightarrow 1000+500+100$	$=1600$

